Structural basis of interprotein electron transfer in bacterial sulfite oxidation

نویسندگان

  • Aaron P McGrath
  • Elise L Laming
  • G Patricia Casas Garcia
  • Marc Kvansakul
  • J Mitchell Guss
  • Jill Trewhella
  • Benoit Calmes
  • Paul V Bernhardt
  • Graeme R Hanson
  • Ulrike Kappler
  • Megan J Maher
  • Michael A Marletta
چکیده

Interprotein electron transfer underpins the essential processes of life and relies on the formation of specific, yet transient protein-protein interactions. In biological systems, the detoxification of sulfite is catalyzed by the sulfite-oxidizing enzymes (SOEs), which interact with an electron acceptor for catalytic turnover. Here, we report the structural and functional analyses of the SOE SorT from Sinorhizobium meliloti and its cognate electron acceptor SorU. Kinetic and thermodynamic analyses of the SorT/SorU interaction show the complex is dynamic in solution, and that the proteins interact with Kd = 13.5 ± 0.8 μM. The crystal structures of the oxidized SorT and SorU, both in isolation and in complex, reveal the interface to be remarkably electrostatic, with an unusually large number of direct hydrogen bonding interactions. The assembly of the complex is accompanied by an adjustment in the structure of SorU, and conformational sampling provides a mechanism for dissociation of the SorT/SorU assembly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title: Structural Basis of Interprotein Electron Transfer in Bacterial Sulfite

COMPETING INTERESTS: The authors declare no financial or non-financial 23 competing interests. 24 2 ABSTRACT 25 Interprotein electron transfer underpins the essential processes of life and relies on the 26 formation of specific, yet transient protein-protein interactions. In biological systems, 27 the detoxification of sulfite is catalyzed by the sulfite-oxidizing enzymes (SOEs), 28 which inter...

متن کامل

Electrocatalytic oxidation of sulfite Ion at the surface carbon ceramic modified electrode with prussian blue

The redox properties of sulfite ion has been examind using cyclic voltammetry in acetonitrile solvent at the surface of gold, pelatin and glassy carbon electrodes. It has bben found tha, sulfite ion exhibits two electron oxidation peak with EC’ mechanism. A novel chemically modified electrode containing Prussian blue complex and multi wall carbon nanotubes (MWCNs) was achieved on the surface of...

متن کامل

Intramolecular electron transfer between molybdenum and iron mimicking bacterial sulphite dehydrogenase.

Diferrocenyl/diferrocenium substituted dioxido molybdenum(VI) complexes [Fe2MoO2] 2(Fc)/[2(FC)]²⁺ mimic the catalytic active site including the redox subunits as well as the catalytic function of bacterial sulphite oxidases.

متن کامل

How are “Atypical” Sulfite Dehydrogenases Linked to Cell Metabolism? Interactions between the SorT Sulfite Dehydrogenase and Small Redox Proteins

Sulfite dehydrogenases (SDHs) are enzymes that catalyze the oxidation of the toxic and mutagenic compound sulfite to sulfate, thereby protecting cells from adverse effects associated with sulfite exposure. While some bacterial SDHs that have been characterized to date are able to use cytochrome c as an electron acceptor, the majority of these enzymes prefer ferricyanide as an electron acceptor ...

متن کامل

Kinetics and mechanism of oxidation of super-reduced cobalamin and cobinamide species by thiosulfate, sulfite and dithionite.

We studied the kinetics of reactions of cob(I)alamin and cob(I)inamide with thiosulfate, sulfite, and dithionite by UV-Visible (UV-Vis) and stopped-flow spectroscopy. We found that the two Co(I) species were oxidized by these sulfur-containing compounds to Co(II) forms: oxidation by excess thiosulfate leads to penta-coordinate complexes and oxidation by excess sulfite or dithionite leads to hex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015